If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-49x^2-49x=0
a = -49; b = -49; c = 0;
Δ = b2-4ac
Δ = -492-4·(-49)·0
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-49)-49}{2*-49}=\frac{0}{-98} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-49)+49}{2*-49}=\frac{98}{-98} =-1 $
| 7n-5=6n-4 | | l-1=4 | | 8b-20b-b-17b=-16b | | x+3-4=12 | | c/13+5=7 | | x-15=7(2x=3)-10 | | 8b-20b-b-17b=16b | | x−1=2x+7 | | -56x-56x^2=0 | | 6x+2(2x+14)=78 | | 57x+500=542 | | 24a+22=4(1-6a) | | j+72=80 | | f(1)=6-4 | | 4.5u+3.4=−5.6 | | -2a+19a-a-15a-6a=-9 | | 6.93x+27.72=55.44 | | 1/3=y+3/4 | | 2.8x-0.6=10.6 | | -9(x+8)+80=16-10x | | -4x-24=-2(x+4) | | 1/2k+2=+5/6k | | 35x+35x^2=0 | | y+3/4=1/3 | | 3c+c+c+3c+c-8=19 | | 6q-q-2q-q+1=19 | | 4x-6-8=12 | | -5x-40x^2=0 | | 3w+4w-6w=20 | | 15p-15p+2p+3=17 | | n/12-5=11 | | F(1)=8x |